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Full-Wave, Finite Element Analysis of
Irregular Microstrip Discontinuities

ROBERT W. JACKSON, SENIOR MEMBER, IEEE

Abstract —Fhite element expansion currents are used to formulate a

full-wave analysis of microstrip diseontinuities. A rigorous anafysis of

fairly irregular structures is possible, including radiation and surface wave

effects as well as coupling between closely spaced junctions. Tbe step,

stub, and bent-stub discontinuities are analyzed using this technique.

Measurements are presented which verify stub calculations.

I. INTRODUCTION

I N THE PAST several years, designers of microwave

and millimeter-wave integrated circuits have come to

depend heavily on computer-aided techniques to reduce

design time and improve performance. Most CAD model-

ing of passive circuits centers on the microstrip circuit

medium and includes models of microstrip bends, steps,

tees, and other discontinuities [1], [2]. In early integrated

circuit designs, these models were used with some success.

In recent years, however, increases in operating frequency

and higher performance requirements have made some of

the earlier models (based on a quasi-static assumption)

insufficiently accurate. Fully electromagnetic models are

now often required in order to include effects such as

dispersion, radiation, and coupling. In addition to higher

frequency requirements, smaller, more densely packed cir-

cuits are being designed in order to reduce cost. This

further increases coupling and makes it awkward to use

many of the standard junctions. As a result, irregularly

shaped junctions may be necessary to reduce crowding,

and modeling of these junctions becomes important. This

paper presents a technique for calculating rigorously, at

high frequencies, the characteristics of somewhat irregular

microstrip junctions.

A number of full-wave techniques have been published

for the analysis of such simpler microstrip discontinuities

as the open end [3]–[6] and step [7]. Both [5] and [6] used

finite” element currents (piecewise sinusoids) to model the

open-end and gap discontinuities on an open substrate,

but in the former case, finite elements were used only in an

area local to the discontinuity y and precomputed sinusoids

were used elsewhere. In [3], [4], and [7], the authors also
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used precomputed sinusoids but modeled the discontinuity

locally with entire domain currents. Some of these junc-

tions may also be analyzed using the full-wave techniques

which have been applied to finline junctions [8], [9].

For more complicated or irregular junctions, most anal-

yses use some type of simplifying assumption, such as a

quasi-static approximation [10], [11] or a magnetic wall

approximation [12]. Exceptions include the use of finite

element currents to model irregularly shaped microstrip

resonators in a closed cavity [13] and irregularly shaped

antennas [14], [15]. The method of lines has also been used

to discretize the currents on irregularly shaped microstrip

structures in an enclosure [16]. In that reference and in

recent work by Rautio and Barrington [17], the entire

modeled structures are discretized. The former de-embeds

discontinuity parameters from a set of resonator calcula-

tions or periodic line calculations. The latter work uses a

magnetic source current on the enclosure wall to excite an

input microstrip line. The resulting current at that point is

used to calculate an admittance which includes both the

excitation effects and the discontinuity effects. A de-

embedding must then take place.

A formulation is presented here which models mi-

crostrip junctions on an open substrate using finite

element expansion currents (rooftop functions) and sinu-

soidal precomputed expansion currents for input and out-

put rnicrostrip lines. In contrast to [16] and [17], only the

junction itself is modeled with a fine ‘mesh of finite ele-

ment currents. This setup allows the finite element resolu-

tion to be adjusted to the junction without using a very

large number of elements to model the slowly varying

input and output currents. A substantial improvement in

accuracy and numerical efficiency can be achieved. Also,

the junction scattering parameters are determined directly

from the amplitudes of the reflected and transmitted sinu-

soids, and no adjustment for source effects is necessary.

When resonator methods [7], [13], [16] are used to deter-

mine two-port discontinuity parameters, two or more res-

onators must be analyzed. This is not necessary when the

technique presented in this paper is used. Whereas [5] and

[6] use only x-directed currents and subdivide along the x

direction, this formulation uses both x- and y-directed
currents and subdivides along both directions. This subdi-

vision makes it easier to analyze irregular structures than
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the methods described in [3]-[7]. Jansen and Wertgen [18]

have developed a similar formulation except that the entire

structure (sources, feedlines, and discontinuities) is en-

closed in a conducting box.

In this analysis, neither cover plate nor sidewalls are

assumed to be present [20] and therefore radiation and

surface wave losses can occur. The measurements and

calculations presented show the effects that these losses

can have on the behavior of a common microstrip struc-

ture. Changing the analysis to include a cover plate is very

easily accomplished. In that case, radiative losses would be

due to the excitation of parallel-plate modes [19] instead of

surface wave and space wave radiation. Similar effects

should occur for discontinuities in an electrically large

lossy box.

It should be noted that not including sidewalls is, in

most cases, a reasonable assumption, since substrate thick-

nesses and junction sizes are typically very smill compared

to the junction’s distance from a sidewall. Sidewalls may

become important if the operating frequency is near a

resonant frequency of the enclosure. A practical circuit is

not operated near these frequencies in a high-Q enclosure,

since all parts of the circuit will couple to each other

through the resonant mode. If operation is required near

such a frequency, absorbing material is added to the box

(along the cover, for example) in order to damp the

resonance. This again causes the wall effect to be small,

since a parallel-plate wave traveling out from a discontinu-

ity is substantially damped by the time it reaches a side-

wall, is reflected, and returns to the discontinuity. Not

including sidewalls in this analysis also generates some

very useful redundancies in the numerical calculations.

In what follows, the moment method formulation is

discussed very briefly, followed by a more detailed descrip-

tion of the expansion mode setup, along with some of the

useful symmetries. Next, results are presented for the step,

stub, and bent stub. Three sets of measured data are

compared to calculated results for the stubs. Calculations

of radiation loss of a quarter-wave stub are compared to

measurements. And finally, the effect of coupling between

closely spaced discontinttities is demonstrated via the

bent-stub configuration.

H. THEORY

The generic configuration which will be analyzed is

presented in Fig. 1. A grounded dielectric slab is shown
which extends to + infinity in the x and y directions. No

cover plate is assumed, although adding one would be a

minor modification. Finite element currents, x- and y-

directed, are located in the cross-hatched region and are

excited by precomputed incident, reflected, and transmit-

ted sinusoidal currents which overlap the finite element

region. Although the configuration as shown assumes A

propagation on the input/output lines, j propagating

sinusoids could be added (i.e., for a 90° corner). Also, the

sinusoidal input/output lines are shown to be centered

around y = O, but they can be offset in the transverse

direction if desired. The junction which is to be analyzed is

Fig. 1. Arrangement of finite element currents and input/output cur-
rents on a grounded dielectric slab. Specific discontinuities form a

subset of these currents.

carved out of the finite element region, and this makes it

possible to analyze many types of junctions. Examples

include open ends, stubs, steps, asymmetric steps, corners,

and others. The most significant limitation is that the

junction must conform to certain discrete sizes.

A. Moment Method Formulation

Since the method of moments is well known, it is only

discussed briefly in order to set the notation and to note

some salient points. The formulation, similar to [5], begins

by determining the x and y components of the electric

field on the surface (z= d) of the grounded dielectric slab

due to a surface current Jon the same surface,

~ ~ Q(k.>k,)
‘(x’y)= (2?7) .m

.~(kx, ky)e ‘kxxe’kydkxdky (1)

where E-(x, y) is the two-component surface field,

J~ kx, &y ) is the Fourier transform of the surface current,

and Q (kx, ky ) is the Fourier transform of the Green’s

function for a current element located at the origin (see

Appendix I). The current is expanded as follows.

J-= ‘EM AIJ~ + W-R + TJ”T + J-’ (2)

whet-e J-R, J-T, J-l ~ ke nown reflected, transmitted, and

incident currents, and the J? are rooftop expansion cur-
rents, some of which are x-directed and some y-directed.

NM is the total number of finite elements, and A,, R, T

are complex coefficients which are to be determined.

Weighted averages of the tangential electric field on the

microstrip surface are set to zero according to the expres-

sion

co

- jjti(x,y)~(x>y)dx~y=o,
—w

i=l,2,3,. . . ,NM+2 (3)

where @ are the weighting functions which, except for
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two, are the same as the finite element expansion currents.

The procedure is therefore ahnost Galerkin. The resulting

matrix has the form

2X1

EY1

z WII

z W21

(4)

where each impedance term has a form which is similar to,

for example, -

.~y(kX, ky) dkX dky. (5)

The impedance elements shown in (4) will be described

more completely in the next section, but all are a result of

a double spectral integration which is performed numeri-

cally. This integration includes a careful evaluation of the

poles which occur in Qij(kX, ky) [21]. These poles (in

practical cases, only one) correspond to surface waves

(with no cover) or parallel-plate waves (with cover). In the

former case, radiation effects are also included.

After the impedances have been computed, (4) is solved

to determine the transmission and reflection coefficients.

Two types of expansion functions and two types of

weighting functions are used in this analysis. Rooftop

functions are used for expansion and weighting in the

junction area, while precomputed sinusoidal currents model

the incident, reflected, and transmitted waves which ex-

tend away from the junction. Two additional weighting

functions are necessary; these will be discussed later.

B. Finite Element Currents

The finite element currents are described by

~(x, y)=t([x -xj]/L) ”s([y-yj]/lv) (6a)

where

{

1–21UI,
t(u)= ~

IUI<O.5

> otherwise

(,

1
s(u) = o’

Iul <0.5

otherwise.

Referring to Fig. 1, the x-directed currents are centered on

the x = constant dashed lines at points midway between
the y = constant dashed lines, while the y-directed cur-

rents are centered on the y = constant dashed lines at

points midway between the x = constant dashed lines. The

x-directed currents overlap each other in the x direction

but not in the y direction, and the reverse is true for the

y-directed currents. The same approach was used in [17]
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except that, in the present formulation, the impedances

formed between a weighting current and an expansion

current depend only on the position vector separating the

two. This would not be true if sidewalls were present (as in

[17] and [18]), since the location of the currents with

respect to the wall also has an effect when the wall is

nearby. The symmetries generated by not having walls plus

the symmetries generated by reciprocity make_it n~essary

t: calculate only the first row or column of ~XX,

z. All the other elements of those matrices

m%trix ~YX can be determined from them.

C. Sinusoidal Expansion Functions

Ideally the incident, reflected, and transmitted

would have the form

~XY and

and the

currents

~~=[g~(y).i +jgj(y)j] [cos(p-x) -~sin(~-~)l

(7a)

~~=[g~(y)l –jgj(y)$] [cos(p-x)+ ~sin(~-x)l

(7b)

~~= [g:(y) i+jgj(y)j] [cos(p+x) –~sin(~+x)l

(7C)

where J-l and J R are zero for x >0, and J-T is zero for

x <0. The functions gj and g; are the transverse varia-

tions of the x- and y-directed currents for x <O, and g;

and g; are the transverse variations for x >0. As dis-

cussed in [5], truncating the cosine portion of the x-

directed currents at x = O causes a longitudinal current

discontinuity, and numerical difficulties result. Instead, the

cosines in (7) are truncated one-quarter guide wavelength

from a zero of the sine. The functions then extend away

from the junction an integral number of half wavelengths

before again terminating. The resulting expansion func-

tions are

f’(x, y) = [g;(y) ~+jg;.(y)j]

. [j-(p-x + rep)- jf- (p-x)] (ga)

.7-R(X> y) = [g~(y).f-jg;(y)j]

. [j-(~-X+ 7i-/2)+ J-( B-X)] (gb)

..qx,y) = [g:(y) i+jg&(y)j]

. [~+(~+x + m/2)- j~+(13+X)] (8c)

where

(
~-(x) = sinx, –nf7<x<0

o, otherwise.

j+(x) =-f-(-x).

The functions g~,, g;,, g;, g~, model gj, g;, gj, g; and
are sums of the functions s([ y – y,]/ W) and ;([ y –

yj]/2W), which were described previously. The exact form
of these summed functions and the propagation constants

~ – and ~+ are computed before beginning the impedance

calculation in (4). This precomputation is fast compared to

the discontinuity calculation and is described in Appen-
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dix II. Note also that the functions in (8) are normally

shifted so as to terminate in the middle of the finite

element grid instead of at x = O as described above.AA- --
_ The impedance vectors ZXI, ZX~, ZX~, ZYI, ZY~, and

ZY~ are formed by taking the inner ~roduct of either ~.x

or WY with one of the currents J 1, ~‘, or ~‘. For

example,

forms the ith component of the vector ~Y~. (It is under-

stood that ~.J’, JXR,JY~ are the Fourier transforms of the

spatial functions described by (6) and (8).)

To determine the dimensions of the impedance matrix in

(4), we note that there are NMX. N&fy x-directed finite

element currents, NMX. ( NMY – 1) y-directed finite ele-

ment currents, plus the J-R and J-T currents. So far, we

have only tested with finite element functions which total

N1’i4X.N&lY + NMX(NMY – 1). As in [4] and [5], two more

testing functions are necessary, and these are chosen to be

til(x, y)=t(x)g:(y).f (9a)

fi2(x, y)=t(x-xo)g;(y)f (9b)

and XO= – ( N&fX +1) L/2. So these testing functions

straddle the lines separating the finite element region and

the purely sinusoidal regions (see Fig. 1) and have a y

dependence which corresponds to the input and output

waveforms. The bottom two rows of (4) obviously result

from forming the inner product of these two weighting

functions and the various expansion functions.

D. Numerical Considerations

As mentioned previously, because each finite element

has the same size and form, and because each mutual

impedance depends only on the vector difference between

the locations of the two currents involved, many useful

redundanci~s occur. So only the top row of elements in, for

example, ZX. needs to be calculated, and the remaining

terms can be determined from them. In addition, due to

the shifting property of Fourier transforms, the integrands

in each of the impedance elements of the top row differ

only by product factors such as exp ( – jkXL/2) and/or

exp ( — jkYW ). Likewise for the other submatrices. There-

fore, at each integration point in (kX, kY) the integrands of

all the necessary impedances within a submatrix differ

from their neighbors by one multiplication, and evaluation

of the integrand proceeds quickly.

The overall setup of the software is such that all the

currents in the grid shown in Fig. 1 are assumed to be

present initially. Using the various symmetries, the

impedance matrix in (4) is computed. Then, at the end of

the routine, various rows and columns are deleted so as to

form a specific junction out of the general gridwork in the

figure. This makes it relatively easy to change the program

from analysis of one type of discontinuity to analysis of

another. Of course, initially one must choose the size of the

input port and the size of the output port and determine

the location of these ports in terms of offset and overlap

within the finite element region. Several finite current

elements are included on the input and output lines in the

vicinity of a junction (see Fig. 3 inset) in order to model

current disturbances in that area.

The principal cost of this flexibility is that only junc-

tions and discontinuities having certain discrete sizes can

be analyzed. For example, the width of the input or output

port must be an integer multiple of W. In many cases this

is not a problem, since interpolation can be used to deter-

mine the characteristics of a noninteger junction.

HI. RESULTS-NUMERICAL AND EXPERIMENTAL

The formulation described above was used to analyze a

step discontinuity, a stub, and a bent stub. In this section,

we compare the step discontinuity results predicted by this

theory with the results predicted by Koster and Jansen. We

then compare the stub results to measurements.

A. Step Discontinuity

In [7], Koster and Jansen presented the results of an

analysis of the microstrip step discontinuity. The details of

their formulation are not completely clear; however, they

do refer to their method as having been described in a

previous paper [4] on end effects. Some of the features of

their analysis are that the expansion currents are entire

domain in a local region near the discontinuity, the expan-

sion currents approximate the edge condition, and the

structure is enclosed in a conducting box. This is in con-

trast to the work presented here, which features finite

element currents in an open or covered structure. These

currents also approximate the edge condition, but do so

with pulse and triangular functions. By not using currents

which closely model the proper conditions at the edge,

some accuracy is sacrificed; however, in many practical

cases, this loss of accuracy is not significant. In return, a

finite element approach allows the analysis of fairly com-

plicated structures.

Using the finite element formulation, we have analyzed

the step discontinuity for the substrate and frequency

parameters used by Koster and Jansen. A comparison of

the results shows that the S parameter magnitudes are

almost identical and the phases show reasonable agree-

ment. Fig. 2 shows a comparison of the phases calculated

in this work to those calculated in [7]. The transmission
phase is numerically a very stable result and differs from

[7] by at most a couple of degrees. As reported in [7], the

most sensitive quantity was found to be the S22 phase. For

the results shown in Fig. 2, the size of the grid was six or

ten sections in the transverse direction (NMY = 6 or 10)

and 28 in the longitudinal direction ( iVA4X = 28). The length

of the total grid is slightly over n//3’. More precisely, L/2

(defined in Fig. 1) is equal to n/(~- [NMX – 2]). Doubling

NMY has a negligible effect on the results. Increasing NMX

from 20 to 28 results in a change of slightly less than 1° for

W2\Wl = 3 or 5 at d/AO = 0.04. Our conclusion is that

the S parameter magnitudes are very accurate and that the
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Comparison of step phase calculations with those of Koster and

Jansen [7]. (a) Transmission phase. (b) Reflection phase.

phases are accurate to within one or two degrees. This is

sufficient for most applications. For further accuracy, the

currents at the edges must be modeled more carefully.

B. Stub

Fig. 3 shows the measured and calculated phase of a

single open-circuit stub attached to a transmission line.

Two discontinuities are evident: a tee junction and an

open end. Note that the measured and calculated resonant

frequencies (where the stub is one-quarter wavelength)

differ by about 1.5 percent and the phase error is less than
7° over most of the band.

The stub structure was etched on the surface of a soft

substrate (Duroid 6010.2) with a dielectric constant near

11 and a thickness of 1.27 mm. Stub dimensions were

measured to within ~ 0.025 mm. Transmission phase and

magnitude were determined using a Hewlett Packard 8510

network analyzer. In order to reliably measure the phase,

the following procedure was used. First, the connector–

microstrip line–stub–microstrip line-connector phase was

measured and the data stored. The stub was then carefully

cut away and the assembly remeasured. By subtracting the
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/
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Fig. 3. Transmission phase of a single stub with measured (model)

dimensions; WO= 1.45 mm (1.42), WI= 1.40 mm (1.40), LI = 4.98 mm

(4.99).

/

phase of the second assembly from the phase of the first,

we obtain the measured phase of the stub. This type of

de-embedding technique is somewhat crude; however, it

does not rely on the phase reproducibility of the connector

transition or inhomogeneities in substrate permittivity. A

reasonably good connector-to-microstrip transition is

“needed. In this case, each transition had a return loss of

better than 25 dB. In order to accurately determine the

substrate dielectric constant, the microstrip through line

was further cut into several linear resonators [22]. The

resonant frequency of each resonator was measured and

used to determine that the dielectric constant was c, =

10.86 +0.1. The error is primarily due to errors in deter-

mining resonator dimensions (rough ends due to the cut).

The numerical model of the stub used nine divisions in

the x direction and nine in the y. With reference to Fig. 1,

both the dimensions L/2 and W are one-half the stub

width. The input and output lines have the same width and

are offset to the top of the grid. The model structure has

slightly different dimensions from the actual measured

structure, but these differences have an insignificant effect

on resonant frequency. Due to the measurement uncertain-

ties in the stub dimensions and in the dielectric constant

(which are input to the analysis), the computed curve

shown in Fig. 3 could be shifted by +1.5 percent in

frequency from the nominal value shown. This would be a

worst-case variation.

Note that a lossless ideal or quasi-static model for this

junction predicts that the phase near resonance should

jump from plus to minus 90°. The model presented here

reproduces the measured reduced peak phase. This reduc-

tion may be due to radiation and conductor loss in the

experiment and radiation loss in the model.
Figs. 4 and 5 illustrate some of the high-frequency

characteristics which a full-wave analysis will reproduce. A

shortened version of the stub shown in Fig. 3 was fabri-

cated such that a resonance occurred near 10 GHz. This is

a fairly high frequency for this substrate thickness and

permittivity (d/AO = 0.04, d&/AO = 0.13), and therefore
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Fig. 4. Characteristics of a single stub with measured (model) dimen-
sions; W. =1.40 mm (1.45), WI= 1.40 mm (1.40), LI = 2.16 mm (2.17).

(a) Transmission phase. (b) Transmission magnitude. IS2112 + ISI112 <1
indicates radiation and surface wave loss.

significant coupling and radiation occur. To properly model

the current in this case, the density of finite element modes

was increased such that L/2 and W in Fig. 1 are one-

quarter of a microstrip width (WO).

Fig. 4 shows the measured and calculated transmission

magnitude and phase. The measurements presented in Fig.

4 were performed in the manner described previously.

Dielectric constant was determined to be 10.65+0.15 and

dimensional inaccuracies were as described previously. The
uncertainty in these input quantities could cause a worst-

case shift of the calculated curve by + 1.5 percent. Agree-

ment between measured and nominal calculation is excel-

lent. Calculated peak phase is further reduced from the

lower frequency case and measurements confirm this re-

duction. In addition, the calculated transmission isolation

at resonance is reduced from roughly 40 dB ( -35 dB

measured) for the 5 GHz stub to 18 dB (15 dB measured)

for the 10 GHz stub. A quasi-static calculation with or

without loss does not show this reduced isolation.

Radiation loss can be an important effect for a substrate

of this thickness. In Fig. 4b, we plot the quantity G = IS2112
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Fig. 5. ( lS,l /2 + ISII 12) measured and modeled for a single stub embed-

ded-in the middle of a 5.1 cm transmission line (see text).

+ ISII] 2 based on the full-wave stub analysis. For a Iossy

junction, (1 – G) is the fraction of incident power lost in

the junction. The figure shows that the theoretical loss (to

radiation and surface waves) peaks at about 25 percent

near 11 GHz.

In order to verify the calculation, transmission and

reflection measurements were made of a stub embedded

between two microstrip lines, each 2.5 cm long. Fig. 5 plots

the quantity G calculated from these measurements. No

de-embedding was performed, and therefore the curve

includes the conductor loss on the input and output lines.

Measurements of the assembly with the stub cut off (a 5.0

cm through line) show a loss of 0.5 dB per inch. Incorpo-

rating this loss per unit length in a standard quasi-static

model of the transmission line-stub-transmission line

structure, results in a calculated G which is plotted in Fig.

5. This model includes conductor loss but not radiation

loss. The stub length in the quasi-static model had to be

adjusted so that the model resonant frequency coincided

with the measured resonant frequency. Note that there is

not a particularly good agreement with measurements

above 9.0 GHz. Replacing only the quasi-static stub model

with a two-port having the full-wave stub S parameters

and leaving in the quasi-static lossy input/output lines

results in the solid curve in the figure. This curve includes

the conductor loss on the input and output lines and the

radiation loss of the stub. Averaging the ripple in the

measured curve (due to connector discontinuities) results
in a curve which is in reasonable agreement with the

full-wave stub model.

To summarize, the straight-stub full-wave analysis shows

good agreement with measured data. Commercial CAD

software using entirely quasi-static models shows good

agreement in resonant frequency for the longer stub, but is

high by about 7 percent for the shorter stub. Quasi-static

models do not predict the measured reduction in peak

phase variation unless conductor loss is included, and that

will not account for the entire observed reduction.

The full-wave calculations in Fig. 4a include radiation

and surface wave effects but not conductor loss. Since
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Fig. 6. Transmission phase of bent stub with measured (model) dimen-
sions; WO=1.33 mm (1.36), WI =1.35 mm (1.39), Wz =1.32 mm (1.36),
LI = 1.38 mm (1.36), L2 = 2.11 mm (2.09).

there is good agreement with measurements, radiation and

surface waves must play an important part; more so than

conductor loss. Quasi-static, models do not predict the

reduced isolation measured at high resonant frequencies.

C. Bent Stub

Fig. 6 shows the measured and theoretical transmission

phase of a bent stub. This is a very complex structure. It

has three discontinuities: a tee, a 90° corner, and an open

end. In addition, the stub is separated from the main line

by one substrate thickness, and therefore coupling is a

factor. As Fig. 4 shows, the agreement between measured

and calculated results is excellent.

The measurement procedure and modeling parameters

were similar to what was used on the low-frequency straight

stub. A dielectric constant of 11.0 ~ 0.1 was measured. The

model dimensions were chosen such that the total length of

the bent-stub model is the same as the total length of the

measured stub. As a result of the discreteness which is

inherent in the modeling procedure, the modeled widths

(Wo, JVl, W,) are slightly different from the actual widths

in the measured structure. Measured and nominal calcu-

lated resonant frequency differ by 0.7 percent. Due to the

uncertainty in the dielectric constant and the measured

dimensions which are input to the analysis, the computed

result could shift by +1.8 percent (worst case) in fre-

quency.

A model of the same structure using quasi-static junc-

tion models and full-wave dispersive transmission lines

gives a resonant frequency of 7.07 GHz—a 13 percent

error. These results, plus the long straight-stub results

(where the quasi-static model was good), indicate that

coupling between different parts of the circuit is impor-

tant.

It should be noted that coupling in this modeling scheme

is not strong coupling (as in a Lange coupler). Strong

coupling would require very accurate field calculations

near interior edges.
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IV. CONCLUSION

In this paper, we have presented a technique for analyz-

ing irregular microstrip junctions. All electromagnetic ef-

fects, including radiation effects, are taken into account.

No sidewalls are assumed, but a cover plate can easily be

included if desired. Numerical results are stable to within

one or two degrees of phase.

Measurements were made of three stub structures. Mea-

sured resonant frequencies agree with full-wave calcula~

tions to within 2 percent when nominal measured dielectric

constant and structure dimensions were used as input.

Using the absolute worst case dielectric constants and

dimensions as input gives an error of 3 percent for the

low-frequency stub and less than that for the other stubs.

The measurements also show: (1) general agreement with

calculated phase behavior to within 5–10°, (2) the effect of

coupling within a structure, and (3) general agreement

between calculated and measured radiation and surface

wave loss.

A principal strength of this technique is its ability to

model the effects of several discontinuities which are close

enough to each other for coupling to occur.

APPENDIX I

GROUNDED SLAB GREEN’S FUNCTION

The tangential electric field components on the surface

of a grounded dielectric slab are related to the tangential

currents on the same surface via the following Green’s

function:

3(X, JJ, xo, yo)
1*

/J
dkX dkY ~(kX, kY) e~~X(x-xO)e~~~tY-J’~) (Al)

= (277)2 _@

where /

Qxx@xAy)

= – jZO sin (kld )

(c,k~-k~)k,cos( kid) +jkl(k~-k~)sin(kld)

koTeT~

(A2)

QyX(JWy)

kz cos (kld) + jkl sin(kld)
= jZokXkY sin (kld )

koT,~n

(A3)

Q.Y(IW,)

‘Qyk ky)) QYY(L k, )= Qxx(h+bWk)

where

k~=k~–k~–k2
Y

k;= c,k; – k: – k;

T== kl cos (kld ) + jkz sin (kld)

T~=c,kzcos(kld)+ jklsin(kld). (A4)
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APPENDIX II

INFINITE MICROSTRIP LINE

In this appendix, we present the formulation used to

precompute the propagation constant ~ and the transverse

dependency of the x- and y-directed currents on the input

and output lines. The procedure is standard, but is out-

lined here in order to show how it fits in with the disconti-

nuity calculation.

Assuming a current distribution of the form

fix,y)=e-’’x[g(y)i+ jg,,(y)j]j] (AS)

(1) gives the following expression for l?:

+ jQ,y(- h, ky)Gy,(~y)]e’kJ’ (Ad

where i = x or y and GX,, GY, are the Fourier transforms of

gxs J b’ys .

The functions gX, and gY, are now expanded so that

N,

L(Y) = s%X?(Y) (A7a)

~=1

NY–l

gys(Y)= z ~mg;(Y) (A7b)

where

g:(Y)=~(Y/~–

f$(Y)=0/2~-

?n-1/2])+.s(y/w+ [m-l/2])

(A8a)

m/2)– t(y/2w’-t in/2) (A8b)

and the functions s and t were defined in (6). N, and W

are chosen such that the total width of the microstrip line

is 2 NY W. Equations (A7) are then Fourier transformed and

combined with (A6). Following the well-known moment

method procedure, functions (A8) are used to test that the

electric field generated by (A6) is zero on the conductor

surface. The resulting impedance matrix is

(A9)

where

(Z:)., n=+j:dkyG:*(ky)Q..(- h,~y)G.:(~y)
w

(AIOa)

(Z:)~ ~= #-~: dkYG:*(ky)QXy(- h,kY)jG;(kY)
w

(AIOb)

(Z;)~ ~= ;f: dkyGf*(k,)QyJ(-h, k,) G;(kp).
w

(A1OC)

The value of h which makes the determinant of Z~ zero is

the propagation constant ~. The values of c,, dj can then

be determined from (A9) and combined with (A7j to

generate gx,( y) and gY~( y). The coefficients {c,, d, } and

~ are stored for use in the discontinuity calculation.
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