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Full-Wave, Finite Element Analysis of
Irregular Microstrip Discontinuities

ROBERT W. JACKSON, SENIOR MEMBER, IEEE

Abstract —Finite element expansion currents are used to formulate a
full-wave analysis of microstrip discontinuities. A rigorous analysis of
fairly irregular structures is possible, including radiation and surface wave
effects as well as coupling between closely spaced junctions. The step,
stub, and bent-stub discontinuities are analyzed using this technique.
Measurements are presented which verify stub calculations.

1. INTRODUCTION

N THE PAST several years, designers of microwave

and millimeter-wave integrated circuits have come to
depend heavily on computer-aided techniques to reduce
design time and improve performance. Most CAD model-
ing of passive circuits centers on the microstrip circuit
medium and includes models of microstrip bends, steps,
tees, and other discontinuities [1], [2]. In early integrated
circuit designs, these models were used with some success.
In recent years, however, increases in operating frequency
and higher performance requirements have made some of
the earlier models (based on a quasi-static assumption)
insufficiently accurate. Fully electromagnetic models are
now often réquired in order to include effects such as
dispersion, radiation, and coupling. In addition to higher
frequency requirements, smaller, more densely packed cir-
cuits are being designed in order to reduce cost. This
further increases coupling and makes it awkward to use
many of the standard junctions. As a result, irregularly
shaped junctions may be necessary to reduce crowding,
and modeling of these junctions becomes important. This
paper presents a technique for calculating rigorously, at
high frequencies, the characteristics of somewhat irregular
microstrip junctions.

A number of full-wave techniques have been published
for the analysis of such simpler microstrip discontinuities
as the open end [3]-[6] and step [7]. Both [5] and [6] used
finite'element currents (piecewise sinusoids) to model the
open-end and gap discontinuities on an open substrate,
but in the former case, finite elements were used only in an
area local to the discontinuity and precomputed sinusoids
were used elsewhere. In [3], [4], and [7], the authors also
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used precomputed sinusoids but modeled the discontinuity
locally with entire domain currents. Some of these junc-
tions may also be analyzed using the full-wave techniques
which have been applied to finline junctions {8], [9].

For more complicated or irregular junctions, most anal-
yses use some type of simplifying assumption, such as a
quasi-static approximation [10], [11] or a magnetic wall
approximation [12]. Exceptions include the use of finite
element currents to model irregularly shaped microstrip
resonators in a closed cavity [13] and irregularly shaped
antennas [14], [15]. The method of lines has also been used
to discretize the currents on irregularly shaped microstrip
structures in an enclosure [16]. In that reference and in
recent work by Rautio and Harrington [17], the entire
modeled structures are discretized. The former de-embeds
discontinuity parameters from a set of resonator calcula-
tions or periodic line calculations. The latter work uses a
magnetic source current on the enclosure wall to excite an
input microstrip line. The resulting current at that point is
used to calculate an admittance which includes both the
excitation effects and the discontinuity effects. A de-
embedding must then take place.

A formulation is presented here which models mi-
crostrip junctions on an open substrate using finite
element expansion currents (rooftop functions) and sinu-
soidal precomputed expansion currents for input and out-
put microstrip lines. In contrast to [16] and [17], only the
junction itself is modeled with a fine mesh of finite ele-
ment currents. This setup allows the finite element resolu-
tion to be adjusted to the junction without using a very
large number of elements to model the slowly varying
input and output currents. A substantial improvement in
accuracy and numerical efficiency can be achieved. Also,
the junction scattering parameters are determined directly
from the amplitudes of the reflected and transmitted sinu-
soids, and no adjustment for source effects is necessary.
When resonator methods [7], [13], [16] are used to deter-
mine two-port discontinuity parameters, two or more res-
onators must be analyzed. This is not necessary when the
technique presented in this paper is used. Whereas [5] and
[6] use only x-directed currents and subdivide along the x
direction, this formulation uses both x- and y-directed
currents and subdivides along both directions. This subdi-
vision makes it easier to analyze irregular structures than
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the methods described in [3]-[7]. Jansen and Wertgen [18]
have developed a similar formulation except that the entire
structure (sources, feedlines, and discontinuities) is en-
closed in a conducting box.

In this analysis, neither cover plate nor sidewalls are
assumed to be present [20] and therefore radiation and
surface wave losses can occur. The measurements and
calculations presented show the effects that these losses
can have on the behavior of a common microstrip struc-
ture. Changing the analysis to include a cover plate is very
easily accomplished. In that case, radiative losses would be
due to the excitation of parallel-plate modes [19] instead of
surface wave and space wave radiation. Similar effects
should occur for discontinuities in an electrically large
lossy box.

It should be noted that not including sidewalls is, in
most cases, a reasonable assumption, since substrate thick-
nesses and junction sizes are typically very small compared
to the junction’s distance from a sidewall. Sidewalls may
become important if the operating frequency is near a
resonant frequency of the enclosure. A practical circuit is
not operated near these frequencies in a high-Q enclosure,
since all parts of the circuit will couple to each other
through the resonant mode. If operation is required near
such a frequency, absorbing material is added to the box
(along the cover, for example) in order to damp the
resonance. This again causes the wall effect to be small,
since a parallel-plate wave traveling out from a discontinu-
ity is substantially damped by the time it reaches a side-
wall, is reflected, and returns to the discontinuity. Not
including sidewalls in this analysis also generates some
very useful redundancies in the numerical calculations.

In what follows, the moment method formulation is
discussed very briefly, followed by a more detailed descrip-
tion of the expansion mode setup, along with some of the
useful symmetries. Next, results are presented for the step,
stub, and bent stub. Three sets of measured data are
compared to calculated results for the stubs. Calculations
of radiation loss of a quarter-wave stub are compared to
measurements. And finally, the effect of coupling between
closely spaced discontinuities is demonstrated via the
bent-stub configuration.

II. THEORY

The generic configuration which will be analyzed is
presented in Fig. 1. A grounded dielectric slab is shown
which extends to + infinity in the x and y directions. No
cover plate is assumed, although adding one would be a
minor modification. Finite element currents, x- and y-
directed, are located in the cross-hatched region and are
excited by precomputed incident, reflected, and transmit-
ted sinusoidal currents which overlap the finite element
region. Although the configuration as shown assumes £
propagation on the input/output lines, § propagating
sinusoids could be added (i.e., for a 90° corner). Also, the
sinusoidal input/output lines are shown to be centered
around y =0, but they can be offset in the transverse
direction if desired. The junction which is to be analyzed is

Fig. 1. Arrangement of finite element currents and input/output cur-
rents on a grounded dielectric slab. Specific discontinuities form a
subset of these currents.

carved out of the finite element region, and this makes it
possible to analyze many types of junctions. Examples
include open ends, stubs, steps, asymmetric steps, corners,
and others. The most significant limitation is that the
Jjunction must conform to certain discrete sizes.

A. Moment Method Formulation

Since the method of moments is well known, it is only
discussed briefly in order to set the notation and to note
some salient points. The formulation, similar to [5], begins
by determining the x and y components of the electric
field on the surface (z =d) of the grounded dielectric slab
due to a surface current J on the same surface,

— [ G(k.x,)

(27)*
Tk, k,)erte ™ di die, (1)

E(x,y)=

where ]::(x, y) is the two-component surface field,
J(k,, k,) is the Fourier transform of the surface current,
and Q(kx, k,) is the Fourier transform of the Green’s
function for a current element located at the origin (see
Appendix I). The current is expanded as follows.

NM
. e o
J= 21A1J7 +RIR+ T T+ J7
)=

(2)

where J R, J7, JT are known reflected, transmitted, and
incident currents, and the fjfe are rooftop expansion cur-
rents, some of which are x-directed and some y-directed.
NM is the total number of finite elements, and A »RT
are complex coefficients which are to be determined.
Weighted averages of the tangential electric field on the
microstrip surface are set to zero according to the expres-
sion

= J[ P ) E(x, y) dxdy =o,

i=1,2,3,--,NM+2 (3)

where W, are the weighting functions which, except for
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two, are the same as the finite element expansion currents.
The procedure is therefore almost Galerkin. The resulting
matrix has the form

Z  Z, Za Z,|: Zo

Z, Z, Zx Zr 4|2,
(Zw) (Zw,) Zwiz Zr 13{ Z,
_(me)t (ZMy)t Zwar Zwar || T | | Zwar

0)

where each impedance term has a form which is similar to,
for example,

(ny)i j (2.7,

[ Wik k)0, (k)

"'OO

Tk, K

x? y

)dk, dk,. (5)
The impedance elements shown in (4) will be desctibed
more completely in the next section, but all are a result of
a double spectral integration which is performed numeri-
cally. This integration includes a careful evaluation of the
poles which occur in Q,;(k,, k,) [21]. These poles (in
practical cases, only one) correspond to surface waves
(with no cover) or parallel-plate waves (with cover). In the
former case, radiation effects are also included.

After the impedances have been computed, (4) is solved
to determine the transmission and reflection coefficients.

Two types of expansion functions and two types of
weighting functions are used in this analysis. Rooftop
functions are used for expansion and weighting in the
junction area, while precomputed sinusoidal currents model
the incident, reflected, and transmitted waves which ex-
tend away from the junction. Two additional weighting
functions are necessary; these will be discussed later.

B. Finite Element Currents

The finite element currents are described by
Jr(x, p) =t([x—x)/L)s(ly=y1/W)  (6a)
5 (e, ) =s(lx=5]/8) 4= 5]1/2%) (@)

where

1-2u|, |u| < 0.5
t
(u) = { 0, otherwise
1, |ul < 0.5
s(u) {0, otherwise.

Referring to Fig. 1, the x-directed currents are centered on
the x = constant dashed lines at points midway between
the y = constant dashed lines, while the y-directed cur-
rents are centered on the y=constant dashed lines at
points midway between the x = constant dashed lines. The
x-directed currents overlap each other in the x direction
but not in the y direction, and the reverse is true for the
y-directed currents. The same approach was used in [17]
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except that, in the present formulation, the impedances
formed between a weighting current and an expansion
current depend only on the position vector separating the
two. This would not be true if sidewalls were present (as in
[17] and [18]), since the location of the currents with
respect to the wall also has an effect when the wall is
nearby. The symmetries generated by not having walls plus
the symmetries generated by reciprocity make it negessary
to calculate only the first row or column of Z_, Z and
Z . All the other elements of those matrices and the
matrlx Z can be determined from them.

C. Sinusoidal Expansion Functions

Ideally the incident, reflected, and transmitted currents
would have the form

T1=[g: (»)i+ jg; (y)9]lcos(B~x)— jsin(Bx)]
(7a)

=8z (»)% - jgy (¥)]lcos(B~x)+ jsin(B~x)]
(76)

TT=|g (y)2+ jg; (¥)9]lcos(B*x)— jsin(B*x)]
(7c)

where J7 and J® are zero for x>0, and J 7 is zero for
x <0. The functions g, and g, are the transverse varia-
tions of the x- and y-directed currents for x <0, and g7
and g; are the transverse variations for x > 0. As dis-
cussed in [5], truncating the cosine portion of the x-
directed currents at x =0 causes a longitudinal current
discontinuity, and numerical difficulties result. Instead, the
cosines in (7) are truncated one-quarter guide wavelength
from a zero of the sine. The functions then extend away
from the junction an integral number of half wavelengths
before again terminating. The resulting expansion func-
tions are

T(x.y) = [ga() 2+ jg5(¥) 7]
[f (B~ x+m/2)= jf (B x)]
[8(3)% = jgn () 7]
A (B x+m/2)+ jf (B x)] (8b)
TT(x,p) = [82.(») %+ jg5i () 9]

(BT x+a2)— jfr(Bx)] (8¢)

(8a)
TR(x,y) =

where

—nr<x<0
otherwise.

=g
£7(x) == £ (=x).

The functions g, g, -3 g;s model g, g7, g, g_;f and
are sums of the functions s([y—y]/W) and #(y—
»1/2W), which were described previously. The exact form
of these summed functions and the propagation constants
B~ and BT are computed before beginning the impedance
calculation in (4). This precomputation is fast compared to
the discontinuity calculation and is described in Appen-
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dix II. Note also that the functions in (§) are normally
shifted so as to terminate in the middle of the finite
element grid instead of at x = 0 as described above.
__The impedance vectors Z,;, Z.g, Z,r» Z,;, Z,g, and
Z,r are formed by taking the inner product of either W;*
or W with one of the currents J I, J R, or JT. For

example,

(27)? ff (Wiy)*(nyJxR + nyJyR) dk . dk

forms the ith component of the vector iyR' (It is under-
stood that W7, JX, JyR are the Fourier transforms of the
spatial functions described by (6) and (8).)

To determine the dimensions of the impedance matrix in
(4), we note that there are NM,-NM, x-directed finite
element currents, NM,-(NM,—1) y-directed finite ele-
ment currents, plus the J® and J T currents. So far, we
have only tested with finite element functions which total
NM,-NM,+ NM,(NM,—1). As in [4] and [5], two more
testing functions are necessary, and these are chosen to be

Wi(x,y) =1(x)gl(»)% (%2)

Wy(x,y) =t(x—x0)g5( )% (9b)

and x,=—(NM_ +1)L/2. So these testing functions
straddle the lines separating the finite element region and
the purely sinusoidal regions (see Fig. 1) and have a y
dependence which corresponds to the input and output
waveforms. The bottom two rows of (4) obviously result
from forming the inner product of these two weighting
functions and the various expansion functions.

D. Numerical Considerations

As mentioned previously, because each finite element
has the same size and form, and because each mutual
impedance depends only on the vector difference between
the locations of the two currents involved, many useful
redundancies occur. So only the top row of elements in, for

example, fxx needs to be calculated, and the remaining
terms can be determined from them. In addition, due to
the shifting property of Fourier transforms, the integrands
in each of the impedance elements of the top row differ
only by product factors such as exp(— jk,L/2) and/or
exp(— jk,W). Likewise for the other submatrices. There-
fore, at each integration point in (k,, k) the integrands of
all the necessary impedances within a submatrix differ
from their neighbors by one multiplication, and evaluation
of the integrand proceeds quickly.

The overall setup of the software is such that al/l the
currents in the grid shown in Fig. 1 are assumed to be
present initially. Using the various symmetries, the
impedance matrix in (4) is computed. Then, at the end of
the routine, various rows and columns are deleted so as to
form a specific junction out of the general gridwork in the
figure. This makes it relatively easy to change the program
from analysis of one type of discontinuity to analysis of
another. Of course, initially one must choose the size of the

input port and the size of the output port and determine
the location of these ports in terms of offset and overlap
within the finite element region. Several finite current
elements are included on the input and output lines in the
vicinity of a junction (see Fig. 3 inset) in order to model
current disturbances in that area.

The principal cost of this flexibility is that only junc-
tions and discontinuities having certain discrete sizes can
be analyzed. For example, the width of the input or output
port must be an integer multiple of W. In many cases this
is not a problem, since interpolation can be used to deter-
mine the characteristics of a noninteger junction.

III. RESULTS— NUMERICAL AND EXPERIMENTAL

The formulation described above was used to analyze a
step discontinuity, a stub, and a bent stub. In this section,
we compare the step discontinuity results predicted by this
theory with the results predicted by Koster and Jansen. We
then compare the stub results to measurements.

A. Step Discontinuity

In [7], Koster and Jansen presented the results of an
analysis of the microstrip step discontinuity. The details of
their formulation are not completely clear; however, they
do refer to their method as having been described in a
previous paper [4] on end effects. Some of the features of
their analysis are that the expansion currents are entire
domain in a local region near the discontinuity, the expan-
sion currents approximate the edge condition, and the
structure is enclosed in a conducting box. This is in con-
trast to the work presented here, which features finite
element currents in an open or covered structure. These
currents also approximate the edge condition, but do so
with pulse and triangular functions. By not using currents
which closely model the proper conditions at the edge,
some accuracy is sacrificed; however, in many practical
cases, this loss of accuracy is not significant. In return, a
finite element approach allows the analysis of fairly com-
plicated structures.

Using the finite element formulation, we have analyzed
the step discontinuity for the substrate and frequency
parameters used by Koster and Jansen. A comparison of
the results shows that the S parameter magnitudes are
almost identical and the phases show reasonable agree-
ment. Fig. 2 shows a comparison of the phases calculated
in this work to those calculated in [7). The transmission
phase is numerically a very stable result and differs from
[7] by at most a couple of degrees. As reported in [7], the
most sensitive quantity was found to be the §,, phase. For
the results shown in Fig. 2, the size of the grid was six or
ten sections in the transverse direction (NM, =6 or 10)
and 28 in the longitudinal direction (N M, = 28). The length
of the total grid is slightly over =/8~. More precisely, L /2
(defined in Fig. 1) is equal to #/(8~ [ NM_ —2]). Doubling
NM,, has a negligible effect on the results. Increasing NM,
from 20 to 28 results in a change of slightly less than 1° for
W,/W;=3or 5 at d/\;=0.04. Our conclusion is that
the S parameter magnitudes are very accurate and that the
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Fig. 2. Comparison of step phase calculations with those of Koster and
Jansen [7]. (a) Transmission phase. (b) Reflection phase.

phases are accurate to within one or two degrees. This is
sufficient for most applications. For further accuracy, :the
currents at the edges must be modeled more carefully.

B. Stub

Fig. 3 shows the measured and calculated phase of a
single open-circuit stub attached to a transmission line.
Two discontinuities are evident: a tee junction and an
open end. Note that the measured and calculated resonant
frequencies (where the stub is one-quarter wavelength)
differ by about 1.5 percent and the phase error is less than
7° over most of the band.

The stub structure was etched on the surface of a soft
substrate (Duroid 6010.2) with a dielectric constant near
11 and a thickness of 1.27 mm. Stub dimensions were
measured to within £0.025 mm. Transmission phase and
magnitude were determined using a Hewlett Packard 8510
network analyzer. In order to reliably measure the phase,
the following procedure was used. First, the connector—
microstrip line-stub—microstrip line—connector phase was
measured and the data stored. The stub was then carefully
cut away and the assembly remeasured. By subtracting the
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S21 PHASE

420 4.50 4.80 §.10 5.40 570 ;00 6.30 6.60 6.90
F(GHz)
Fig. 3. Transmission phase of ‘a single stub with measured (model)

‘dimensions; W, =1.45 mm (1.42), W; =1.40 mm (1.40), L, =4.98 mm
(4.99). ‘

’

phase of the second assembly from the phase of the first,
we obtain the measured phase of the stub. This type of
de-embedding technique is somewhat crude; however, it
does not rely on the phase reproducibility of the connector
transition or inhomogeneities in substrate permittivity. A
reasonably good connector-to-microstrip transition is
needed. In this case, each transition had a return loss of
better than 25 dB. In order to accurately determine the
substrate dielectric constant, the microstrip through line
was further cut into several linear resonators [22]. The
resonant frequency of each resonator was measured and
used to determine that the ‘dielectric constant was €, =
10.86+0.1. The error is primarily due to errors in deter-
mining resonator dimensions (rough ends due to the cut).

The numerical model of the stub used nine divisions in.
the x direction and nine in the y. With reference to Fig. 1,
both the dimensions L/2 and W are one-half the stub
width. The input and output lines have the same width and
are offset to the top of the grid. The model structure has
slightly different dimensions from the actual measured
structure, but these differences have an insignificant effect
on resonant frequency. Due to the measurement uncertain-
ties in the stub dimensions and in the dielectric constant
(which are input to the analysis), the computed curve
shown in Fig. 3 could be shifted by +1.5 percent in
frequency from the nominal value shown. This would be a
worst-case variation. :

Note that a lossless ideal or quasi-static model for' this
junction predicts that the phase near resonance should
jump from plus to minus 90°. The model presented here
reproduces the measured reduced peak phase. This reduc-
tion may be due to radiation and conductor loss in the
experiment and radiation loss in the model.

Figs. 4 and 5 illustrate- some of the high-frequency
characteristics which a full-wave analysis will reproduce. A
shortened version of ‘the stub shown in Fig. 3 was fabri-
cated such that a resonance occurred near 10 GHz. This is
a fairly high frequency for this substrate thickness and
permittivity (d /A, = 0.04, d\/g /Ao =10.13), and therefore
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Fig. 4. Characteristics of a single stub with measured (model) dimen-
sions; W, =1.40 mm (1.45), W} =1.40 mm (1.40), L, = 2.16 mm (2.17).
'(a) Transmission phase. (b) Transmission magnitude. [S|* +[Sy,|* <1
indicates radiation and surface wave loss.

12.50

significant coupling and radiation occur. To properly model
the current in this case, the density of finite element modes
was increased such that L/2 and W in Fig. 1 are one-
quarter of a microstrip width (W}).

Fig. 4 shows the measured and calculated transmission
magnitude and phase. The measurements presented in Fig.
4 were performed in the manner described previously.
Dielectric constant was determined to be 10.65+0.15 and
dimensional inaccuracies were as described previously. The
uncertainty in these input quantities could cause a worst-
case shift of the calculated curve by +1.5 percent. Agree-
ment between measured and nominal calculation is excel-
lent. Calculated peak phase is further reduced from the
lower frequency case and measurements confirm this re-
duction. In addition, the calculated transmission isolation
at resonance is reduced from roughly 40 dB (~ 35 dB
measured) for the 5 GHz stub to 18 dB (15 dB measured)
for the 10 GHz stub. A quasi-static calculation with or
without loss does not show this reduced isolation.

Radiation loss can be an important effect for a substrate
of this thickness. In Fig. 4b, we plot the quantity G = |S,,|?

1.00 T T T T

——  modeled with full wave stub

080} 1

— —  modeled with quas-static stub

——  measured

1S211%+ 1S111?

030+ 4

6.20 - b

010+ b

000 s L L
7.50 850 950 1050

F(GHz)
Fig. 5. (|Sy|? +]S,;|%) measured and modeled for a single stub embed-
ded in the middle of a 5.1 cm transmission line (see text).

I
11.50 1250

+|S,|? based on the full-wave stub analysis. For a lossy
junction, (1— G) is the fraction of incident power lost in
the junction. The figure shows that the theoretical loss (to
radiation and surface waves) peaks at about 25 percent
near 11 GHz.

In order to verify the calculation, transmission and
reflection measurements were made of a stub embedded
between two microstrip lines, each 2.5 cm long. Fig. 5 plots
the quantity G calculated from these measurements. No
de-embedding was performed, and therefore the curve
includes the conductor loss on the input and output lines.
Measurements of the assembly with the stub cut off (a 5.0
c¢m through line) show a loss of 0.5 dB per inch. Incorpo-
rating this loss per unit length in a standard quasi-static
model of the transmission line-stub-transmission line
structure, results in a calculated G which is plotted in Fig.
5. This model includes conductor loss but not radiation
loss. The stub length in the quasi-static model had to be
adjusted so that the model resonant frequency coincided
with the measured resonant frequency. Note that there is
not a particularly good agreement with measurements
above 9.0 GHz. Replacing only the quasi-static stub model
with a two-port having the full-wave stub S parameters
and leaving in the quasi-static lossy input/output lines
results in the solid curve in the figure. This curve includes
the conductor loss on the input and output lines and the
radiation loss of the stub. Averaging the ripple in the
measured curve (due to connector discontinuities) results
in a curve which is in reasonable agreement with the
full-wave stub model.

To summarize, the straight-stub full-wave analysis shows
good agreement with measured data. Commercial CAD
software using entirely quasi-static models shows good
agreement in resonant frequency for the longer stub, but is
high by about 7 percent for the shorter stub. Quasi-static
models do not predict the measured reduction in peak
phase variation unless conductor loss is included, and that
will not account for the entire observed reduction.

The full-wave calculations in Fig. 4a include radiation
and surface wave effects but not conductor loss. Since
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Fig. 6. Transmission phase of bent stub with measured (model) dimen-
sions; W, =1.33 mm (1.36), W; =1.35 mm (1.39), W, =1.32 mm (1.36),
L, =1.38 min (1.36), L, = 2.11 mm (2.09).

there is good agreement with measurements, radiation and
surface waves must play an important part; more so than
conductor loss. Quasi-static models do not predict the
reduced isolation measured at high resonant frequencies.

C. Bent Stub

~ Fig. 6 shows the measured and theoretical transmission
phase of a bent stub. This is a very complex structure. It
has three discontinuities: a tee, a 90° corner, and an open
end. In addition, the stub is separated from the main line
by one substrate thickness, and therefore coupling is a
factor. As Fig. 4 shows, the agreement between measured
and calculated results is excellent.

The measurement procedure and modeling parameters
were similar to-what was used on the low-frequency straight
stub, A dielectric constant of 11.0 0.1 was measured. The
model dimensions were chosen such that the total length of
the bent-stub model is the same as the total length of the
measured stub. As a result of the discreteness which is
inherent in the modeling procedure, the modeled widths
(W,, W, W,) are slightly different from the:actual widths
in the measured structure. Measured and nominal calcu-
lated resonant frequency differ by 0.7 percent. Due to the
uncertainty in the dielectric constant and the measured
dimensions which are input to the analysis, the computed
result could shift by +1.8 percent (worst case) in fre-
quency.

A model of the same structure using quasi- -static junc-

tion models and full-wave dispersive transmission lines
gives a resonant frequency of 7.07 GHz—a 13 percent
error. These results, plus the long straight-stub results
(where the quasi-static model was good), indicate that
coupling between different parts of the circuit is impor-
tant. , ,
It should be noted that coupling in this modeling scheme
is not strong coupling (as in a Lange coupler). Strong
coupling would require very accurate field calculations
near interior edges.
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IV. - CONCLUSION

In this paper, we have presented a technique for analyz-
ing irregular microstrip junctions. All electromagnetic ef-
fects, including radiation effects, are taken into account.
No sidewalls are assumed, but a cover plate can easily be
included if desired. Numerical resuits are stable to within
one or two degrees of phase.

Measurements were made of three stub structures. Mea-
sured resonant frequencies agree with full-wave calcula-
tions to within 2 percent when nominal measured dielectric
constant and structure dimensions were used as input.
Using the absolute worst case dielectric constants and
dimensions as input gives an error of 3 percent for the
low-frequency stub and less than that for the other stubs.
The measurements also show: (1) general agreement with
calculated phase behavior to within 5-10°, (2) the effect of
coupling within a structure, and (3) general agreement
between calculated and measured radiation and surface
wave loss.

A principal strength of this technique is its ability to
model the effects of several discontinuities which are close
enough to each other for coupling to occur.

APPENDIX [
GROUNDED SLAB GREEN’S FUNCTION

'The tangential electric field components on the surface
of a grounded dielectric slab are related to the tangential
currents on the same surface via the following Green’s
function:

G_‘(X, Y, XO, yO)
( )éjkx(x'xo)ejky(y_}’o) (Al)
~(n) ! ‘
where
Q.. (K, k)
= — jZgsin(k,d)
(e,k2—k2)k,cos(k,d) +jk,(k—k2)sin(k;d)
kO];Tm '
(A2)
ny(kx’ ky)
. ) kycos(k,d)+ jkysin(k,d)
= jZok K, sin (k;d) oTT,
(A3)
Qxy(kx’ ky)

=ny(kx’ky)7 ny(kx’ky) =Qxx(kx—)ky’ky_;kx)
where '
k3=ki—k}-k}
k2= ki—k2—k?
T, =k, cos(k;d)+ jk,sin(k,d)

T, =¢.kycos(k.d)+ jkysin(kid). (A4)
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APPENDIX 11
INFINITE MICROSTRIP LINE

In this appendix, we present the formulation used to
precompute the propagation constant 8 and the transverse
dependency of the x- and y-directed currents on the input
and output lines. The procedure is standard, but is out-
lined here in order to show how it fits in with the disconti-
nuity calculation.

Assuming a current distribution of the form

T(x, p) =e g, (y) %+ jg,(») 5]
1) gives the following expression for E:

(A3)

£-2 —hk,) G (k)

+ jQ,y(— h,k,)G,i(k,)] e’ (A6)

are the Fourier transforms of

where i=x or y and G, G,

Xxs?

gxs> g st
Thé functions g and g, are now expanded so that
N}’
g()= X c,gl(y) (ATa)
m=1
N, -1
g,(¥)= X d.g’(») (A7b)
m=1
where
gl () =s(y/W=[m=1/2) +s(y/W+[m-1/2])
(A8a)
g (»)=1(y/2W—-m/2)=1(y/2W +m/2)  (A8b)

and the functions s and ¢ were defined in (6). N, and W
are chosen such that the total width of the microstrip line
is 2N W. Equations (A7) are then Fourier transformed and
combined with (A6). Following the well-known moment
method procedure, functions (A8) are used to test that the
electric field generated by (A6) is zero on the conductor
surface. The resulting impedance matrix is

I - -
—‘oo h Eoo h C‘y
Z5(h)  Zg(h) ||, :
dy H
where
( xx)m n:———f dk Gm* )vi(—h’ky)G:(ky)
(A10a)
(z=) ———/ dk,Gr* (k,)Q,,(~ h,k,) jGI(k,)
(A10b)
1 e
;;) n=E/_wdky(;;“(ky)Qn(—h>ky)G;(ky)~
(A10c)

The value of 4 which makes the determinant of Z* zero is
the propagation constant 8. The values of ¢, d; can then
be determined from (A9) and combined with (A7) to
generate g, () and g,(»). The coefficients {c,, d,} and
B are stored for use in the discontinuity calculation.

ACKNOWLEDGMENT

The author wishes to express his thanks to J. J. Burke
for his very careful measurements.

REFERENCES

[1] P. Silvester and P. Benedek, “Microstrip discontinuity capacitances
for right-angle bends, T-junctions and crossings,” IEEE Trans.
Microwave Theory Tech., vol. MTT-21, pp. 341-346, 1973.

[2] A. Gopinath er al., “Equivalent circuit parameters on microstrip

" step change in width and cross junctions,” IEEE Trans. Microwave
Theory Tech., vol. MTT-24, pp. 142-144, 1976

[3] R. H. Jansen, “Hybrid mode analysis of end effects of planar
microwave and millimeter wave transmission lines,” Proc. Inst.
Elec. Eng., vol. 128, pt. H, pp. 77-86, Apr. 1978.

[4] J. Boukamp and R. H. Jansen, “The igh frequency behavior of
microstrip open ends in microwave integrated circuits including
energy leakage,” in Proc. 14th European Microwave Conf., 1984, pp.
142-147.

[5] R. W. Jackson and D. M. Pozar, “Microstrip open-end and gap
discontinuities,” IEEE Trans. Microwave Theory Tech , vol. MTT-
33, pp. 1036-1042, Oct. 1985.

[6] P. B. Katehi and N. C. Alexopoulos, “Frequency-dependent char-
acteristics of microstrip discontinuities in millimeter-wave inte-
grated circuits,” TEEE Trans. Microwave Theory Tech., vol. MTT-
33, pp. 1029-1035, Oct. 1985.

[77 N.H. L. Koster and R. H. Jansen, “The microstrip step discontinu-
ity: A revised description,” JEEE Trans. Microwave Theory Tech.,
vol. MTT-34, pp. 213-223, Feb. 1986.

[8] R. Sorrentino and T. Itoh, “Transverse resonance analysis of fin-
line discontinwties,” IEEE Trans. Microwave Theory Tech., vol.
MTT-32, pp. 1633-1638, Dec. 1984.

[9] H. El-Hennawy and K. Schunemann, “Impedance transformation

in fin lines,” Proc. Inst. Elec. Eng., vol. 129, pp. 342-350, Dec.

1982.

K. C. Gupta ez al., Computer-Aided Design of Microwave Circuits.

Dedham, MA: Artech House, 1981.

T. Okoshi, Planar Circutts for Microwaves and Lightwaves.

York: Springer Verlag, 1985.

G. Kompa, “S-matrix computation of microstrip discontinuities

and a planar waveguide model,” Arch. Elek. Ubertragung., vol, 30,

pp. 58-64, 1976.

R. H. Jansen, “High-order finite element polynomials in the com-

puter analysis of arbitrarily shaped microstrip resonators,” Arch.

Elek. Ubertragung., vol. 29, pp. 241-247, 1975.

J. R. Mosig and F E. Gardiol, “General integral equation formula-

tion for microstrip antennas and scatterers,” Proc. Inst. Elec. Eng.,

vol. 132, pt. H, no. 7, pp. 425-432, Dec. 1985.

J. R. Mosig, “Arbitrarily shaped microstrip structures and their

analysis with a mixed potential integral equation,” IEEE Trans.

Microwave Theory Tech., vol. 36, pp. 314-323, Feb. 1988.

S. B. Worm and R. Pregla, “Hybrid-mode analysis of arbitrarily

shaped planar microwave structures by the method of lines,” IEEE

Trans. Microwave Theory Tech., vol. MTT-32, pp. 186-191, Feb.

1984.

J. C. Rautio and R. F. Harrington, “An electromagnetic time-

harmonic analysis of shielded microstrip circuits,” IEEE Trans.

Microwave Theory Tech., vol. MTT-35, pp. 726-730, Aug. 1987.

R. H. Jansen, “Modular source-type 3D analysis of scattering

parameters for general discontinuities, components and coupling

effects in (M)MICs,” in I7th European Microwave Conf. Proc.,

(Rome, Italy), 1987, pp. 427-432.

R. W. Jackson, “Considerations in the use of coplanar waveguide

for millimeter-wave integrated circuuts,” IEEE Trans. Microwave

Theory Tech., vol. MTT-34, pp. 1450-1456, Dec. 1986.

(10]

[11] New

[12]

(13]

[14]

[15]

(16]

7]

[18]

(19]



JACKSON: FULL-WAVE, FINITE ELEMENT ANALYSIS

[20] R. H. Jansen, “The spectral domain approach for microwave
integrated circuits,” IEEE Trans. Microwave Theory Tech., vol.
MTT-33, pp. 1043-1056, 1985.

[21] D. M. Pozar, “Input impedance and mutual coupling of rectangular
microstrip antennas,” IEEE Trans. Antennas Propagat., vol. AP-30,
pp. 1191-1196, Nov. 1982.

[22] T. C. Edwards, Foundations for Microstrip. Circuit Design. New
York: Wiley, 1981, p. 189.

L

Robert W. Jackson (M’82-SM’88) was born in Boston, MA, on October
18, 1952, He received the B.S. (1975) and Ph.D. (1981) degrees in

89

electrical engineering from Northeastern Univer-
sity, Boston, MA. His thesis was on nonlinear
plasmia interactions in the earth’s bow shock.
From 1981 to 1982 he was an Assistant Profes-
sor at Northeastern University. Since 1982; he
has been on the faculty of the Department of
Electrical and Computer Engineering at the Uni-
versity of Massachusetts, Amherst, where he is a
member of the Microwave and Electronics Labo-
ratory. His research interests include numerical
electromagnetics applied to millimeter-wave inte-

grated circuits and active microwave and millimeter-wave circuit design.



